**Innovation for Our Energy Future** 

# GIS Data Manipulation and Economic Modeling Issues and Examples

Geospatial Statistics and Issues in Energy Modeling Workshop

May 10, 2005

Ray George, Donna Heimiller, Anelia Milbrandt, Liz Brady Sabeff



#### **Overview**

- GIS Generated Resource Supply Curves
- Uncertainty In Estimating Biomass Spatial Distribution
- Uncertainty In Solar Radiation Estimates
  Based On Input Data
- Potential Data Sets For Regionalization
  To Support National Level Models



## GIS Generated Resource Supply Curves

- GIS analysis can be used to generate supply curves for regional models
  - Take advantage of higher resolution datasets
  - Account for cost factors with spatial components
    - Transmission line length
    - Slope
- Limited to setting up initial conditions



### WinDS – Regional Supply Curves

- Original wind resource resolution varies from 200 m to 25 km
  - Resource is resampled to 200 m cell size and separated by power class
  - Resource aggregated to 3 km cells
    - Aggregation needed for processing
    - Preserve wind class distribution
    - Cells much smaller than WinDS regions

## Wind to Transmission Line Assignment

- Assign lowest cost wind cells first
- Cost based on:
  - Wind power class
  - Distance to transmission line/load
  - Slope (starting region)
  - Population density (starting region)
- Continues until all wind is assigned or all transmission capacity is used



### **Generate Regional Supply Curves**

| Region | WPC | Costbin |         |
|--------|-----|---------|---------|
| 1      | 7   | 34      | 51.3200 |
| 1      | 7   | 35      | 37.9600 |
| 1      | 7   | 36      | 7.2400  |
| 1      | 7   | 37      | 5.4800  |
| 1      | 7   | 38      | 2.6000  |
| 1      | 7   | 39      | 0.2800  |
| 1      | 7   | 41      | 0.8400  |
| 1      | 7   | 44      | 0.2000  |
| 1      | 7   | 45      | 0.6200  |
| 1      | 6   | 35      | 15.8000 |
| 1      | 6   | 36      | 19.4400 |
| 1      | 6   | 37      | 10.9200 |
| 1      | 6   | 38      | 6.9800  |
| 1      | 6   | 39      | 9.8600  |
| 1      | 6   | 40      | 3.2000  |
| 1      | 6   | 41      | 21.9800 |
| 1      | 6   | 42      | 30.8400 |
| 1      | 6   | 43      | 9.2800  |
| 1      | 6   | 44      | 5.2400  |
| 1      | 6   | 46      | 8.0000  |
| 1      | 6   | 48      | 0.4600  |
| 1      | 6   | 49      | 6.0200  |
| 1      | 6   | 50      | 18.4800 |
| 1      | 6   | 51      | 3.0000  |
| 1      | 6   | 53      | 1.8600  |
| 1      | 5   | 42      | 10.0800 |
|        |     |         | 10.000  |

- GIS system tracks for each resource points:
  - Cost assigned at
  - Amount of area assigned
  - Region the resource is in
  - Transmission line assigned to
- Build supply curves by summarizing resource by power class and cost bin for each source region

### WinDS – Regional Supply Curves



- Cost factors don't have to be linear
- Assigned cost can be aggregated to other regions (states)
- Can only reflect initial conditions

#### How can spatial statistics help?

- What is appropriate starting aggregation size for resource?
  - 3 km picked through trial and error
  - Technology specific factors?
- Load allocation
- Information on spatial correlation of resource
- Predict/extrapolate regional demand growth rates





## Uncertainty in Estimating Biomass Spatial Distribution

- Residue data reported by county
- Possible data to support better spatial distribution
  - Land use (crop and forest residues) 1km or better
  - Animal farm locations (animal manure)
  - Mill locations
  - Landfill locations

NREL's biomass assessment is based on statistical data that is reported by county to USDA, Forest Service, EPA

### Differences in Spatial Distribution



## Importance of spatial distribution of Biomass

- Transportation and transmission proximity for cost analyses
- Building more precise supply curves
- Co-firing with conventional fuels
- Power plant siting

Current by-county distribution forces analysis to use single value or equal distribution





## How can Spatial Statistics Help in Biomass?

- Allocate resource to specific areas within a county
- Quantify residue that could be collected within 50, 75, and 100 miles radius from a power plant
- Determine the type of residue that dominates within the radius



### Uncertainty in Solar Radiation Estimates can Directly Influence Success of Concentrating Solar Projects

- Direct Normal Irradiance (DNI) modeled estimates have an uncertainty that ranges up to +/- 20%
- Break-even annual DNI for Concentrating Solar Power (CSP) plants is generally considered to be DNI = 7000 whr/m<sup>2</sup>/day
- DNI values are highly dependent on AOD (Aerosol Optical Depth), which is hard to measure.
- Clean air prospecting with better aerosol data will reduce uncertainty of DNI estimates.



# **Example Analysis Project: Southwest Aerosol Optical Depth**

- AOD critical input for CSP solar modeling
- Previous study for 1996 solar maps:
- ✓ Used surface DNI measurements, plus other data inputs to "back out" AOD.
- Did not adjust for elevation
- Used a simplified seasonal pattern
- For new aerosol data, we wanted to:
- Use new high quality surface AOD measurements
- ✓ Use more realistic seasonal patterns over deserts
- ✓ Adjust AOD for elevation.



## DNI Very Sensitive to Aerosol Optical Depth (AOD)



#### **Southwestern Seasonal Aerosol Patterns**



#### **Annual AOD vs Elevation**



#### **Annual AOD Adjusted to Sea Level**



#### **Annual Average DNI - Change with Enhanced Aerosols**



## Possible Enhancements to Reduce AOD and Hence DNI Uncertainty?

- Evaluate uncertainty of AOD estimates using surface data locations, terrain complexity, other data, statistical methods?
- Evaluate reduction in uncertainty if we get new data from a hypothetical location.
- Process many proposed locations to choose optimum location for new surface measurements.



#### Potential Data Sets For Regionalization To Support National Level Models

#### Renewable Energy Resources

- Wind resources, long-term regional multipliers
- Wind Supply/Demand, Capacity factors by time of day/season
- Biomass supply
- Geothermal resources
- Solar insolation for distributed PV & CSP systems
- PV & CSP capacity factors by time of day/season
- Hydro resource or supply curves for new sites
- Hydroelectric Conventional Net Summer Capacity
- Landfill Gas Yield Ratios



### Potential Data Sets For Regionalization To Support National Level Models (cont)

#### **Electricity**

- T&D interconnection costs
- Extra T&D costs for wind
- T&D costs avoided by DG
- Electricity Demand
- Retail Sales of Electricity
- Average Retail Price of Electricity
- Electric generation plants
- Electric transmission lines
- Electric transmission line rating and available capacity

- Emissions by power plant
- Natural gas pipeline location and capacity
- Coal reserves
- Current coal capacity
- Coal consumption
- Current natural gas capacity
- Natural gas reserves
- Natural gas consumption
- Hydro capacity (river and flow rates?)



### Potential Data Sets For Regionalization To Support National Level Models (cont)

#### **Residential and Commercial**

- Heating Degree Days and Cooling Degree Days
- Appliance shares (number of homes with freezers, DW, CW, CAC, Room AC)
- Pipeline capacity for gasfired DG
- Renewable energy incentives
- EPA designated nonattainment areas
- Clean Cities

- Major commercial/industrial users of electricity; demand, supply
- Population
- Household characteristics
- Energy consumption by source and end use sector
- Residential electric demand
- Military electric demand, supply



#### **BACKUP SLIDES**

### **Procedure For Updated AOD**

- Process surface AOD from 6 stations (high quality, limited spatial extent)
- Use average monthly profiles for interior location in the Southwest. Assign profiles to every model grid cell with the help of outside (cloud) data.
- Derive elevation dependence of AOD
- Adjust annual mean values to sea level
- Resample to 10 km grid
- Adjust final aerosol values using 10 km elevation data.



#### Aerosol Station Values, 1996 CSR Data Grid





**Data Grid DNI Stations** 

#### **Annual BAOD**

- 0.032 0.05
- 0.05 0.06
- 0.06 0.07
- 0.07 0.08
- 0.08 0.09
- 0.09 0.1
- 0.1 0.12
- 0.12 0.14
- 0.14 0.16
- 0.16 0.18
- **0.18 0.3**



### Adjusting Aerosol Profiles in Southwest Using Elevation

